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Abstract

Motivation: As a rising research topic, brain imaging genetics aims to investigate the potential genetic architecture
of both brain structure and function. It should be noted that in the brain, not all variations are deservedly caused by
genetic effect, and it is generally unknown which imaging phenotypes are promising for genetic analysis.

Results: In this work, genetic variants (i.e. the single nucleotide polymorphism, SNP) can be correlated with brain
networks (i.e. quantitative trait, QT), so that the connectome (including the brain regions and connectivity features)
of functional brain networks from the functional magnetic resonance imaging data is identified. Specifically, a con-
nection matrix is firstly constructed, whose upper triangle elements are selected to be connectivity features. Then,
the PageRank algorithm is exploited for estimating the importance of different brain regions as the brain region fea-
tures. Finally, a deep self-reconstruction sparse canonical correlation analysis (DS-SCCA) method is developed for
the identification of genetic associations with functional connectivity phenotypic markers. This approach is a regu-
larized, deep extension, scalable multi-SNP-multi-QT method, which is well-suited for applying imaging genetic as-
sociation analysis to the Alzheimer’s Disease Neuroimaging Initiative datasets. It is further optimized by adopting a
parametric approach, augmented Lagrange and stochastic gradient descent. Extensive experiments are provided to
validate that the DS-SCCA approach realizes strong associations and discovers functional connectivity and brain re-
gion phenotypic biomarkers to guide disease interpretation.

Availability and implementation: The Matlab code is available at https://github.com/meimeiling/DS-SCCA/tree/main.

Contact: dqzhang@nuaa.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Among brain diseases appearing in the world, Alzheimer’s disease
(AD) lies in a high incidence level. Such disease seriously damages
human behaviors, particularly in memory decline, which further
injures the abilities of language, visuospatial perception, arithmetic
abilities and executive functioning. It is very valuable to early diag-
nose and prevent AD (Brookmeyer et al., 2007; Lambert et al.,
2013; Winkler et al., 2010).

Brain imaging genetics is a rising research topic. In such research,
genotyping and neuroimaging data are integrated for revealing the
associations from genotypes to phenotypes (Du et al., 2018; Fu
et al., 2015; Hao et al., 2017; Lin et al., 2014; Shen and Thompson,
2020; Wang et al., 2021c,b; Yan et al., 2014). With genetic analysis

of imaging measures, not only risk variants closely related to dis-
eases can be detected, but the potential biological mechanism of pre-
clinical brain variations is deeply investigated. Most existing works
are focused on the correlation analysis between structural neuroi-
maging and genetic variants. For example, Yan et al. (2014) have
exploited sparse canonical correlation analysis (SCCA) with prior
knowledge to associate the APOE gene with structural information
of 78 regions of interests (ROIs). In Hao et al. (2017), a three-way
SCCA (T-SCCA) framework has been designed to associate genetic
variations in the APOE gene with brain ROIs measured via voxel-
based morphometry (VBM). In Du et al. (2018), a truncated l1-norm
penalized SCCA has been developed, which can accurately associate
APOE single nucleotide polymorphism (SNP) rs429358 with the
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gray matter density of hippocampus for the brain region related to
AD. Wang et al. (2021c) have incorporated useful discriminant simi-
larity information into SCCA approach, and successfully discovered
common ROIs associated with genetic variations in the APOE gene.

At present, these studies have only attached importance for fea-
ture extraction from brain ROIs, and few successfully depict rela-
tions among brain areas. Many works have insisted that internal
functional connections are included in resting networks (RSNs). The
brain networks are able to be collected from resting state functional
magnetic resonance imaging (fMRI) for quantifying brain region
connections. Within a brain network (a.k.a., connectome), nodes
are represented as regions-of-interest (ROIs) and edges can be
denoted to be the correlation or connectivity strength between brain
regions. Therefore, such brain network is viewed as a set of nodes
and edges. We note that the network connections of an individual
are considered as the reflection of the comprehensive properties of
the corresponding brain system (Sporns, 2014). For instance, in lit-
erature (Thompson et al., 2013), relevant works on the relationship
between genes and brain structural connections and functional net-
works (fMRI) are reviewed. Jie et al. (2014) developed a connection
network-based classification method for classifying patients suffer-
ing from mild cognitive impairment (MCI) and normal people, and
the classification accuracy is significantly improved. In Fu et al.
(2015), Fu et al. (2015) concluded that the functional connectivity is
genetically limited by heritability analysis. Wang et al. (2019) pro-
posed a general framework so that the risk genetics are associated
with brain network by exploiting both network voxel and connect-
ivity. These voxel information and connectivity information are
obtained from the structural magnetic resonance imaging (sMRI)
and fMRI, which are deemed to be intermediate traits bridging gen-
etic risk factors and disease state. As a result, the function connec-
tion network is tightly associated with both genes and diseases.

In our work, firstly, we parcellate the brain fMRI for each sub-
ject (as the phenotype input) into 90 ROIs by using the Automated
Anatomical Labeling (AAL) atlas, where the cerebellum is removed.
Then, for describing the connection strength of the brain region, we
exploit the average time series of each brain region and the Person
correlation coefficient of the brain region. The brain functional con-
nection network of a subject is a 90�90 weighted brain network.
Studies have shown that correlation-based methods are more effect-
ive in carrying the interconnection between brain regions (Smith
et al., 2011). At last, for brain network phenotype data, we con-
struct a functional connection matrix. In addition, some related re-
search works have indicated that PageRank can be not only applied
to directed graph (i.e. social network analysis), but also used for un-
directed graph (i.e. protein structure analysis) (Sarma et al., 2015).
For example, these works in both Jiang et al. (2017) and Liu et al.
(2020) apply PageRank to undirected protein network analysis. The
study in Gleich (2015) has proposed that PageRank can also be uti-
lized in human brain network analysis, although it is an undirected
graph. Inspired by those works, we tried to use PageRank to evalu-
ate node importance information of our brain network. After that,
its upper triangle elements are extracted to be connectivity features
and the PageRank algorithm (Florescu and Caragea, 2017) is
adopted for estimating the importance of different brain regions as
the brain region features. Based on the above consideration, our
study focuses on identifying the connectome (including the brain re-
gion features and connectivity feature) by realizing the analysis of
correlation between functional brain network and genetic variants.
As a bi-multivariate technique, SCCA is strongly able to discover
complex multi-SNP-multi-QT correlations in imaging genetics.
Nevertheless, for previous SCCA methods, there exist three chal-
lenges in the calculation of precise bi-multivariate correlations and
selection of relevant features, including high-dimensionality (across
all 4005 network edges between 90 brain regions), non-linearity and
fewer subjects. In order to remedy the challenges mentioned-above,
a novel kernel approach for brain imaging genetics, which is called
deep self-reconstruction sparse canonical correlation analysis (DS-
SCCA). More specifically, the deep network, i.e. multiple stacked
layers of non-linear transformation, is adopted to be the kernel, and
the self-representation matrix is learned for reconstructing the

source data at the top layer. With the parametric algorithm, aug-
mented Lagrange and stochastic gradient descent for optimization,
the parameters in the designed model will be iteratively learned. The
motivations are two-fold. First, a multi-layer feed-forward neural
network is utilized to map each sample into a non-linear feature
space, which aims to well discover the non-linear relationship of
samples. Second, when the feature dimension is high and the sample
size is small, it is difficult to calculate accurate bi-multivariate rela-
tionships and selecting relevant features. The self-representation
idea (Elhamifar and Vidal, 2013) is facilitated to conduct the sub-
space clustering iteratively at the top layer of network. Subspace
clustering at the top layer of the network is conducted, aiming to it-
eratively learn the mapping function. In the mapping function, the
local structure is manipulated by the grouping effect which reflects
the similarity structure of data to help identify these relevant
markers.

In our preliminary work, only genotype data and connectivity
edge data are combined for imaging genetics, which has been
reported on ISBI 2021 (Wang et al., 2021a). In this journal article,
the new contributions are given as following: First, extending the
framework is a connectome genetics work, which is conducted for
exploring the relationship between SNPs and brain network. This
study can better discover how genetic factors affect brain connectiv-
ity than our preliminary work. Second, the proposed DS-SCCA ap-
proach is assessed on three additional phenotype datasets (i.e. brain
network, the brain ROI node features of the non-network structure,
the brain ROI node features of the network structures), with results
validating its effectiveness. Third, more comprehensive biomarkers
have been provided to guide disease interpretation than our
preliminary work. Fourth, our method is compared to several state-
of-the-art algorithms. Fifth, the analysis of the parameter and group-
ing effect in the proposed DS-SCCA model is studied.

2 Materials and methods

For most existing works, only the correlations between structure
imaging and genetic variants are concerned, whereas the connec-
tome is ignored, which are represented by a set of nodes and edges,
where nodes denote ROIs in the brain and edges denote the connect-
ivity strength or correlation between brain regions. Our work
focuses on identifying the connectome (including the brain region
features and connectivity features) of functional brain networks
derived by realizing the relationships between genotypes and brain
network phenotypes. Figure 1 is adopted to show a visual frame-
work of our approach. Specifically, a connection matrix is firstly
built, whose upper triangle elements are extracted to be connectivity
features. Then, the PageRank algorithm is exploited so that the im-
portance of different brain regions is estimated as the brain region
features. At last, a novel DS-SCCA method is proposed to identify
genetic associations with functional connectivity phenotypic
markers.

In this section, we will describe the connectivity features based
on Pearson correlation coefficient in the connectome, the brain re-
gion features based on the PageRank algorithm in the connectome,
SCCA, the proposed DS-SCCA and optimization algorithm.

2.1 Brain connectivity features based on Pearson

correlation coefficient
Using the AAL atlas, the brain fMRI for each subject (as the pheno-
type input) is firstly decomposed into 90 ROIs, where the cerebellum
is removed. Many related works have been validated that
correlation-based methods can effectively realize the interconnection
between brain regions (Smith et al., 2011). The functional connect-
ivity between the ROI pairs is calculated by exploiting Pearson cor-
relation coefficients. A functional connectivity network is built for
each subject, where the network vertices correspond to the ROIs
and the edge weights are the correlation coefficients. We here apply
Fisher’s r-to-z transformation to the functional connectivity network
(matrix) for improving the normality of the coefficients below:
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z ¼ 0:5½lnð1þ rÞ � lnð1� rÞ� ; (1)

where z represents approximately normal distribution with respect
to standard deviation rz ¼ 1ffiffiffiffiffiffiffi

n�1
p , in which n represents the amount

of ROIs. r denotes the Pearson correlation coefficient. Moreover, for
extracting valuable network measures, all negative correlations are
dislodged. Thus, the brain functional connection network of a sub-
ject is a weighted brain network matrix with 90�90. At last, the
upper triangle elements of the functional connection matrix are
exploited to be connectivity feature of the connectome, and which
yields a set of brain connectivity features for each subject.

2.2 Brain region features based on PageRank algorithm
As shown in Florescu and Caragea (2017), the PageRank algorithm
is the extensively utilized in Web page analysis. One argument is
pointed out that if a node has significant links, its links to other
nodes are also of significance. Gleich (2015) insisted that due to
similar properties included in brain networks, the PageRank algo-
rithm can be exploited for the analysis of brain networks. Inspired
by this, brain regions are compared with web pages, as well as con-
nections between regions are compared with ones between web
pages. The PageRank algorithm is further utilized for estimating the
significance of brain regions. Suggested by Yan and Ding (2011), a
simplified PageRank form can be described below:

sA ¼
P

a2PðAÞ
sa

Na
; (2)

where A denotes a node, and P(A) represents the set of nodes con-
necting to node A. Na is the amount of links of node a, and sA repre-
sents score of node A. The PageRank has the following property, i.e.
the bigger value of sA, the higher significance of Ath node. Figure 2
is adopted to illustrate a visual example of the algorithm and corre-
sponding calculation steps. Here, PðAÞ ¼ fa;bg and sA ¼ sa

2 þ
sb

2 .
Finally, for the PageRank algorithm in Equation (2), the node

importance vectors of brain network are computed to be the brain
region features of the connectome, and a set of brain region features
for each subject is produced.

2.3 Sparse canonical correlation analysis
In a brain network (i.e. connectome), nodes are represented as
ROIs, and edges can be denoted to be the connectivity strength or
correlation between brain regions. Therefore, such brain network is
able to be viewed as a set of nodes and edges. According to this argu-
ment, above-discussed connectivity edge features in Section 2.1 and
node features in Section 2.2 are directly fused into brain network
phenotype data. Suppose that the SNP genotype data is denoted by

X ¼ ½x1; . . . ;xn; . . . ;xN �T 2 RN�p, and the brain network phenotype
data is represented as Y ¼ ½y1; . . . ; yn; . . . ; yN �T 2 RN�r, in which N
means the subject amount, as well as p and r denote respectively the
feature amounts of both SNPs and brain network.

As we know, the SCCA (Chi et al., 2013; Lin et al., 2014;
Parkhomenko et al., 2009; Wan et al., 2011; Witten et al., 2009) is
a common multivariate approach and a powerful association
method, which aims to linearly transform X and Y so that Xu and
Yv are maximally correlated. This theory is modeled to be the fol-
lowing form:

maxu;v uTXTYv
s:t: uTXTXu � 1; vTYTYv � 1; jjujj1 � c1; jjvjj1 � c2

; (3)

where u and v denote canonical loadings or weights, which reflect
the contribution of each feature in the identified canonical correl-
ation. It should be noted that the first two constraints are able to de-
scribe the covariance of data. The last two constraints can control
the sparsity, which aim to select few relevant features from the SNP
and imaging data.

2.4 Deep self-reconstruction SCCA
With the SCCA bi-multivariate technique, complex multi-SNP-
multi-QT correlations can be identified in imaging genetics. It
should be noted that three challenges of SCCA are existed in the cal-
culation of precious bi-multivariate correlations and selection of
relevant features, including high-dimensionality, non-linearity and
fewer subjects. In order to address such challenges, a multi-layer

Fig. 1. Visual framework of the developed method

Fig. 2. An example of the PageRank algorithm and the calculation steps
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feed-forward neural network is utilized. By this way, each sample is
mapped into a non-linear space, and the non-linear correlation of
samples could be effectively explored. Further, at the top Mþ1
layer, subspaces are clustered, aiming to iteratively learn the map-
ping functions. Thus, we define the following DS-SCCA:

maxu;v;hf ;hg
uTf TðX; hf ÞgðY; hgÞv

s:t: uTf TðX; hf Þf ðX; hf Þu � 1; vTgTðY; hgÞgðY; hgÞv � 1
jjujj1 � c1; jjvjj1 � c2

; (4)

where hg ¼ fWðmÞ
g ; b

ðmÞ
g ;Cg;m ¼ 1 : Mg and hf ¼

fWðmÞ
f ; b

ðmÞ
f ;Cf ;m ¼ 1 : Mg represent the parameters of the deep

network, in which m ¼ 1; 2; . . . ;M is the amount of the layers.
Here, in order to clearly present our method, h ¼
fWðmÞ; bðmÞ;C; m ¼ 1 : Mg is defined to be hf (or hg), input sample
xi (or yj) is denoted by h

ð0Þ
l ¼ xi 2 Rp (or h

ð0Þ
l ¼ yj 2 Rr),

l ¼ 1;2; . . . ;N, the output of the mth layer is defined to be:

h
ðmÞ
l ¼ GðWðmÞh

ðm�1Þ
l þ bðmÞÞ 2 Rdm ; (5)

where WðmÞ 2 Rdm�dm�1 and bðmÞ 2 Rdm represent the weight and
bias matrices in the mth layer, in which dm indicates the dimension.
Gð�Þ denotes the activation function.

For data X (or Y), we define the output HðMÞ of the top layer as
following:

HðMÞ ¼ ½hðMÞ1 ; h
ðMÞ
2 ; . . . ;h

ðMÞ
N � (6)

. In order to obtain HðMÞ, the data matrix is firstly transformed
into a non-linear space via using a multi-layer feed-forward neural
network. The self-representation idea (Elhamifar and Vidal, 2013) is
then facilitated to iteratively cluster subspaces at the top layer, so
that the reconstruction ability of the self-representation is ensured
and the local data structure can be captured. The corresponding
model is formulated into:

min
fWðmÞ ;bðmÞgMm¼1 ;C

1

2

XN
l¼1

jjhðMÞl � clH
ðMÞjj2F þ

k
2

trðCLCTÞ; (7)

where the first term indicates the loss function, which ensures the re-
construction ability. The second term exploits the grouping effect so
that the local data structure is captured, Its effectiveness has been
validated in literature (Han et al., 2014), and which has the strong
capacity of describing the similarity structure for the reconstruction
of the source data. C 2 RN�N and cl 2 Rl�l represent the self-
reconstruction matrix. H 2 RN�p or ðRN�rÞ and hl 2 Rl�p or ðRl�rÞ
represent the output of the top layer for the given data matrix X (or
Y). L ¼ D� S represents the Laplacian matrix, where S measures
the data similarity. Following this study in Han et al. (2014), the
similarity matrix S can be computed via exploiting the k-nearest
neighbor graph, in which neighbor size k is fixed to four in our

experiments. D denotes the diagonal matrix containing element

Dii ¼
Pn
j¼1

Sii. trð�Þ is used to compute the trace of matrix.

Some remarks are here provided. For our designed model, the
self-representation (Elhamifar and Vidal, 2013) is facilitated for
learning the transformation function. By neural network, the non-
linearity of data can be utilized. With the grouping effect, the local
structure is manipulated, which can well reflect the similarity struc-
ture for the reconstruction of the source data. Figure 3 is used to
visually present embedding deep self-reconstruction mapping from
source data to the mapped data space.

2.5 Optimization algorithm
For obtaining optimal solution of Equation (4), we design a prox-
imal alternating optimization scheme. The iterative update of
WðmÞ; bðmÞ, C, u and v is as follows:

Update WðmÞ and bðmÞ: Keeping with C and HðMÞ fixed, variables
WðmÞ and bðmÞ can be updated via:

min
fWðmÞ ;bðmÞgMm¼1

1

2

XN
l¼1

jjhðMÞl � clH
ðMÞjj2F (8)

. The Equation (8) can be solved by the sub-gradient descent algo-
rithm. We take the derivatives of the objective function in Equation (8)
respectively with respect to parameters WðmÞ; bðmÞ to zero, and the
chain rule (Peng et al., 2016) is utilized for obtaining the forms below:

@J

@WðmÞ ¼ DðmÞðhðm�1Þ
l ÞT ; (9)

@J

@bðmÞ
¼ DðmÞ; (10)

where DðmÞ satisfies the form below:

DðmÞ ¼ f ðW
ðmþ1ÞÞTDðmþ1Þ �G0ðtðmÞl Þ;m ¼ 1; . . . ;M� 1

ðhðmÞl � clH
ðmÞÞ �G0ðtðmÞl Þ;m ¼M

; (11)

where t
ðmÞ
l ¼Wðmþ1Þh

ðm�1Þ
l þ bðmÞ; Gð�Þ represents the activation

function and G0ð�Þ denotes the corresponding derivative. The oper-
ator � is used to calculate the element-wise multiplication.

Thus, the neural network can be updated by the following
paradigm:

WðmÞ ¼WðmÞ � s
@J

@WðmÞ

bðmÞ ¼ bðmÞ � s
@J

@bðmÞ

;

8><
>:

(12)

where s indicates a small positive constant, which denotes the step
size and is fixed to s ¼ 10�4 in the experimental evaluation.

Fig. 3. Visual presentation of embedding deep self-reconstruction mapping from source data to the mapped data subspace
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Update C: Once fixing WðmÞ and bðmÞ, C can be updated via:

min
C
jjHðMÞ � CHðMÞjj2F þ ktrðCLCTÞ (13)

. The derivative of Equation (13) with C is set to zero, and we can
obtain the following equation:

ðHðMÞÞTðHðMÞÞCþ kCL ¼ ðHðMÞÞTðHðMÞÞ (14)

. This equation meets the form of the continuous Lyapunov equa-
tion, whose solution could be acquired by utilizing ‘lyap’ function in
MATLAB. The WðmÞ; bðmÞ and C will be iteratively updated until
the objective function Equation (8) satisfies the convergence
condition.

In Equation (4), for convenient and clear description, h ¼
fWðmÞ; bðmÞ;C;m ¼ 1 : Mg is defined as hf ¼
fWðmÞ

f ; b
ðmÞ
f ;Cf ;m ¼ 1 : Mg (or hg ¼ fWðmÞ

g ;b
ðmÞ
g ;Cg;m ¼ 1 : Mg),

and we define the output HðMÞ of the top layer in the neural network

as H
ðMÞ
f (or H

ðMÞ
g ). According to the above step, we iteratively up-

date W
ðmÞ
f ; b

ðmÞ
f , Cf for given data X and W

ðmÞ
g ; b

ðmÞ
g , Cg for given

data Y. Once the objective function converges, we can obtain the Cf,

H
ðMÞ
f , Cg and H

ðMÞ
g .

Update u and v: To update u and v, we consider network param-
eters W

ðmÞ
f ; b

ðmÞ
f , Cf for the data matrix X and W

ðmÞ
g ; b

ðmÞ
g , Cg for the

data matrix Y are in an optimum state. Then, the mapped neural
activities are able to be represented into:

f ðX; hf Þ ¼ Cf H
ðMÞ
f ¢K; (15)

gðY; hgÞ ¼ CgHðMÞg ¢X (16)

. Therefore, for solving the DS-SCCA problem—Equation (4), the
Lagrange multiplier is used, and the objective function with the pen-
alties can be expressed into:

Lðu; vÞ ¼ minu;v jjKu� Xvjj22 þ
a1

2
jjKujj22

þ a2

2
jjXvjj22 þ c1jjujj þ c2jjvjj

(17)

. At last, the corresponding solutions in each iteration step are
described below:

u ¼ ðKTKþ c1D1Þ�1KTXv; (18)

v ¼ ðXTXþ c2D2Þ�1XTKu; (19)

where D1 and D2 represent both diagonal matrices, whose k1th

element is denoted by 1
2jjuk1 jj1

k1 2 ½1; r�Þ
�

and k2th element is

1
2jjvk2 jj1

k2 2 ½1; r�Þ
�

. As can be found, the k1th element 1
2jjuk1 jj1

and

k2th element 1
2jjvk2 jj1

cannot be computed when juj ¼ 0; jvj ¼ 0.

Therefore, 1
2jjuk1 jj1

and 1
2jjvk2 jj1

are here respectively rewritten as

1

2

ffiffiffiffiffiffiffiffiffiffi
u

k2
1þn

p and 1

2

ffiffiffiffiffiffiffiffiffiffi
v

k2
2þn

p , where n is a real number with a small value.

Because D1, D2 rely on u, v, we present an optimization proced-
ure with iterative update to solve this objective. In each iteration, u
is updated via fixing v, and v is then updated via fixing u. The pro-
cedure stops once the predefined stopping criterion is satisfied. The
general optimization procedure of the proposed algorithm is pro-
vided in Algorithm 1.

3 Experiment

We will provide extensive experiments to assess the performance of
the proposed DS-SCCA approach.

3.1 Materials and experimental settings
(1) Data Preparation

The imaging data and genotyping data are prepared from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database in
this article. The related new information is updated in www.
adniinfo.org. The subject data consist of fMRI and SNP data. We
compare imaging and gene subjects and eliminate ones with missing
values; thus, 157 valid subjects are used, which contain 26 AD, 40
early mild cognitive impairment (EMCI), 34 late mild cognitive im-
pairment (LMCI), 19 significant memory concern (SMC) and 38
Normal Control (NC).

(2) Experimental Settings

In order to avoid any bias caused by random data division, 10 times
independent non-repetitive 5-fold cross-validation are implemented

Algorithm 1 DS-SCCA method

Input: SNP genotype X ¼ ½x1; . . . ; xn; . . . ; xN�T 2 RN�p; Brain network phenotype Y ¼ ½y1; . . . ; yn; . . . ; yN �T 2 RN�r; Subjects with label

information (i.e. NC, SMC, EMCI, LMCI or AD)

Output: u, v, hf, hg

Optimization:

1: Initialize WðmÞ; bðmÞ; HðMÞ and C;

2: while not converge dO

3: for i ¼ 1;2; . . . ;N dO

4: Randomly select a sample xi and let h
ð0Þ
i ¼ xi;

5: Update WðmÞ and bðmÞ by Equation (8);

6: Compute HðMÞ by Equation (5);

7: Update C by Equation (14);

8: enD

9: end whilE

10: Initialize u and v;

11: while not converge dO

12: Calculate the diagonal matrix D1, where the k1th element is 1
2jjuk1 jj1

;

13: Update u ¼ ðKTKþ c1D1Þ�1KTXv;

14: Scale u so that jjKujj2 ¼ 1;

15: Calculate the diagonal matrix D2, where the k2th element is 1
2jjvk2 jj1

;

16: Update v ¼ ðXTXþ c2D2Þ�1XTKu;

17: Scale v so that jjXvjj2 ¼ 1;

18: end whilE

Identify connectome between genotypes and brain network phenotypes 5
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to evaluate the average regression performance. A grid search is
employed to optimally adjust the regularization parameters. The
correlation coefficient between actual and predicted response values
is computed, which is a common index for evaluating performances
of association analysis. The actual value represents the feature value
of the genotype data or phenotype data obtained by the association
analysis method in this article.

In order to discover the association between SNPs and brain net-
work, four competing QTs properties are included, i.e. (i) the brain
ROI node features of the non-network structure: VBM, fluorodeox-
yglucose positron emission tomography (FDG), and F-18 florbetapir
PET scans amyloid imaging (AV45) in ADNI datasets, (ii) the brain
ROI node features of the network structures: clustering coefficients,
which is denoted as CC, (iii) the brain ROI node features of the net-
work structures: node importance by using the pagerank algorithm,
which is denoted as NIP and (iv) the brain connectivity edge features
of the network structures: construct a functional connection matrix
whose upper triangle elements are extracted to be connectivity fea-
ture, which is denoted as edge.

In our experiments, the benchmark algorithm SCCA (CCA with
lasso) (Chi et al., 2013; Lin et al., 2014; Wan et al., 2011; Yan et al.,
2014) is selected for comparison in this study. In addition, since the
kernel method (Melzer et al., 2003) is a common tool that can well
reveal and describe non-linear structural information in source input
space, the SCCA is extended to the corresponding kernel version
(KSCCA) so that the non-linear problems are considered for the
comparison in this study. We exploit the Gaussian kernel (i.e.

Kxðxi; xjÞ ¼ e
�
�xi�x2

j

2r2
x and Kyðyi; yjÞ ¼ e

�
�yi�y2

j

2r2
y ). The optimal kernel

widths r2
x and r2

y are sought via searching parameter spaces

½2ð�2Þ; 2ð�1Þ;20; 21;22� � r2
x0

and ½2ð�2Þ; 2ð�1Þ;20; 21;22� � r2
y0

. r2
x0

and r2
y0

are the mean square distances of samples. In our developed

DS-SCCA method, we select dimensions of SNPs and OTs to be the
L value for DNN-based models.

3.2 Improved association between genotype and brain

network phenotype
Figure 4 is adopted to show the correlation coefficients estimated by
different methods for different competing QTs properties via 5-fold
cross-validation, where its mean is shown. From this figure, it is
observed that all approaches demonstrate stable results across five
experiments for different QTs properties. Although acceptable cor-
relation coefficients are yielded via all approaches, DS-SCCA is ob-
viously and consistently advantageous over SCCA method. Hence, it
can be validated that the good ability to identify strong imaging gen-
etic associations. In addition, for different QTs properties, obvious-
ly, DS-SCCA yields the best mean on brain network QTs.
Specifically, the brain ROI node features (including CC and NIP)
and connectivity edge features of the network structures reveal sig-
nificant correlation, indicating the relation between the functional
features and SNPs. Furthermore, the brain ROI node features (NIP)

of the network structures reveal higher correlation than the brain
ROI node features (including VBM, FDG and AV45) of the non-
network structure, which also proves that the technology of brain
network analysis and the hidden biological information of the brain
network have great potential for mining the association between
SNPs and imaging.

Figure 5 also presents the canonical loadings tested from 5-fold
cross-validation in one experiment, where heat maps are used for
the brain ROI node features and each row corresponds to a brain
ROI node feature. We list the estimated canonical loading u on the
top panel, which indicates weights for SNPs. We present the esti-
mated v on the bottom, which contains weights for the imaging
markers. It could be observed that our proposed DS-SCCA method
in the brain ROI node features (NIP) yields a much clear picture for
u and v. Only the APOE e4 SNP rs429358 is emphasized on the gen-
etic side, which is tightly correlated with AD (Lambert et al., 2013).
Our method also discovered the APOE e4 SNP in the brain ROI
node features (CC, VBM, FDG and AV45), but presented much add-
itional SNPs compared with the brain ROI node features (NIP).
Thus, their results are not as sparse as NIP QTs properties. As a re-
sult, we could see that with DS-SCCA for NIP QTs properties, a
much clean pattern is exhibited as well as a small amount of relevant
imaging signals are reported, including amygdala-left, frontal-inf-
orb-left, hippocampus-left and hippocampus-right that are closely
associated with AD (de Leon et al., 1995; Du et al., 2016; Horinek
et al., 2007). Briefly, the proposed DS-SCCA in brain network QTs
properties successfully discovered a biologically valuable correla-
tions between APOE SNP rs429358 and the metabolic alteration,
pathological amyloid depositions and structure atrophy at the brain
regions closely associated with AD. This further demonstrates that
the proposed DS-SCCA in NIP QTs properties is able to achieve
both the revealing of strong imaging genetic associations and the
identification of valuable and relevant genetic and imaging markers.

3.3 Analysis of the most related ROI marker
In order to detect brain imaging ROIs, we average the acquired
sparse coefficients through 5-fold cross-validation using our pro-
posed method in brain network QTs data. Then, we choose the top
10 maximum weight ROIs to be the significant ROI markers.
Table 1 is adopted to present the top 10 selected imaging features,
whose average regression coefficients across five cross-validation tri-
als are visually shown in Figure 6 via mapping onto the brain (Xia
et al., 2013).

From Table 1 and Figure 6, it is seen that most of the selected
ROIs identified via the proposed approach agree with those reported
in previous works. Relevant structural imaging studies (de Leon
et al., 1995; Horinek et al., 2007) reported that several diagnostic
AD markers have been identified. Literature (Barnes et al., 2007)
has proved that cingulate atrophy and hippocampus atrophy are im-
portant features for judging whether AD, and cingulate gyrus atro-
phy is more discriminative for AD. Meanwhile, Anterior cingulate
gyrus and Orbitofrontal cortex (superior) are both related to cogni-
tive and emotional control (Bechara et al., 2000; Bush et al., 2000),
and patients with AD usually have greater emotional changes, which
further confirms the effectiveness of the DS-SCCA approach.
Additionally, many works have concluded that the abnormalities of
the default model network (DMN) are included in destroyed brains
suffering from mental illness and behavioral disorders. DMN is an
important functional system in the brain. In DMN, misconnection
of nodes may lead to AD, depression and even schizophrenia. In
AD, DMN is first harmed by amyloid deposits (Zhang and Raichle,
2010), which mainly consists of precuneus, posterior cingulate cor-
tex, inferior parietal lobule, bilateral temporal cortex and medial
prefrontal cortex. Previous studies have found that the default net-
work function of patients or high-risk groups has local activity
abnormalities (Wang et al., 2013). According to our results, it is fur-
ther proved that the gray matter density of DMN is strongly associ-
ated with genotype. Besides prior findings are confirmed, APOE
rs429538 is also associated with other eminent AD markers like
middle frontal gyrus and inferior occipital gyrus. Particular

Fig. 4. The listed experimental average results by using fivefold cross validation,

which is obtained on different QTs data
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correlations among genotypes, phenotypes and neuropsychiatric
symptoms seem to be existed, which are worthy to be further
investigated.

3.4 Connectivity analysis
Brain network is viewed as a simplified representation of brain sys-
tem, where nodes indicate brain regions as well as edges are repre-
sented as the connections between regions. The thickness represents

the weight of the edge after feature selection, which can be under-
stood as the importance of the edge in correlation problems.

For the edge features in the brain network, we use the Brainnet
Viewer (Xia et al., 2013) to plot top 10 maximum weight edges

chosen via the designed DS-SCCA approach in Table 2 and Figure 7.
From Table 2 and Figure 7, we observe that the internal structure

of DMN has obvious influence on the identification of genotype.

Additionally, the connection between DMN and other brain regions
(angular gyrus, middle frontal gyrus, caudate) are closely related to
genotype. Many existing works have validated that the local abnor-
mal activity of the DMN node area can cause the variation of topo-
logical network attributes of other network areas (Ward et al.,
2015). The results of this article also further indicate that DMN is
the important purpose of AD. At present, literature (de Jong et al.,
2008) illustrates that the volume of the pallidum and putamen is ob-
viously related to that of the neocortical gray matter in subjects.
But, different degrees of brain gray matter atrophy are included in
AD patients (Karas et al., 2004). The visual cortex in the brain,
which is mainly responsible for processing visual information, is
located around calcarine. The literature (Yip et al., 2005) has found
that 90% of the subjects had amyloid deposition around calcarine,

Fig. 5. The experimental results with five-fold cross validation on different QTs properties data

Table 1. The top 10 ROIs selected for brain network QTs by the DS-

SCCA method

ID ROI Related studies

38 R. Hippocampus de Leon et al. (1995)

37 L. Hippocampus de Leon et al. (1995)

41 L. Amygdala Horinek et al. (2007)

35 L. Posterior cingulate gyrus Barnes et al. (2007)

36 R. Posterior cingulate gyrus Barnes et al. (2007)

32 R. Anterior cingulate gyrus Barnes et al. (2007)

6 R. Orbitofrontal cortex (superior) Bechara et al. (2000)

53 L. Inferior occipital gyrus —

7 L. Middle frontal gyrus —

5 L. Orbitofrontal cortex (superior) Bechara et al. (2000)

Note: L, left; R, right. Fig. 6. The mapping top 10 ROIs for brain network QTs by our DS-SCCA approach

are visually presented. The color denotes the regression coefficients of imaging

markers
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which is one of the manifestations of AD. In addition, the structural
characteristics of precentral gyrus, paracentral lobule and supple-
mentary motor area are closely associated with AD (Iwai et al.,
1995; Jenkins et al., 1992). According to numerous clinical exam-
ples, it is proved that in this area certain obstacles in the movement
and perception of advanced AD patients are included like stiff hands
and feet, curl and incontinence. Our results further confirm that
patients with AD have movement and perception obstacles in clinic-
al manifestations.

4 Discussion

In this section, the effect of the parameter k is analyzed, grouping ef-
fect of our proposed deep self-reconstruction network is further
investigated, state-of-the-art algorithms are compared, and we final-
ly discuss the limitations of the proposed approach and the direc-
tions of further study.

4.1 Effect of parameter k
In our proposed DS-SCCA method, the parameter k for the identifica-
tion between genotypes and different QTs properties is an important
parameter by DS-SCCA. The optimal value of parameter k is selected
from the range of ½0:0001; 0:001; 0:01; 0:1; 1; 10; 100� in our experi-
ments. For observing how the k values affect the final performance,
the curves of DS-SCCA methods are plotted with the selected param-
eter range. In addition, we also use correlation coefficient to measure
the performance of DS-SCCA. Figure 8 shows the experimental results
with different k on different QTs properties data.

From Figure 8, it is found that the k values affect the final per-
formance. More specifically, when k lies in the range of ½0:0001 1�,
DS-SCCA achieves better correlation coefficient. This means that
the weight matrices got by Equation (7) have the ability to hold the

intrinsic local data structure and the great performances could be
obtained. Conversely, when the k value is bigger than 1, the correl-
ation coefficient decreases down obviously. The reason for this is
that with k increasing, the role of the regularization term in
Equation (7) tends to be weakened and it will appear to many non-
zero values in the reconstructive weight vector, which implies that
the intrinsic geometric structure of data will be neglected.

4.2 Grouping effect of our proposed deep self-

reconstruction network
In Supplementary Figure S1, the t-distributed stochastic neighbor
embedding (t-SNE) plot (Laurens and Hinton, 2008) is used for
visually presenting the original genetic data and reconstructed data.
We can find that our proposed deep self-reconstruction network
produces grouping effect for different classes of patients (i.e. LMCI,
EMCI, SMC, NC and AD).

In addition, in order to validate the effectiveness of such group-
ing effect at the top Mþ1 layer of the network by self-
representation, we compare DS-SCCA with the DS-SCCA without
grouping effect by self-representation (denoted as D-SCCA) and DS-
SCCA only with grouping effect by self-representation (denoted as
S-SCCA), with results shown in Supplementary Figure S2. As can be
seen in Supplementary Figure S2, S-SCCA can yield much better
results. This implies that self-representation promotes the correl-
ation coefficient of DS-SCCA. Moreover, the correlation coefficient
of D-SCCA is obviously smaller than that of DS-SCCA. In other
words, such grouping effect at the top Mþ1 layer is effective in DS-
SCCA to assist to improve the association performance.

4.3 Comparison with state-of-the-art algorithms
In this part, the proposed approach is compared with some state-of-
the-art algorithms, which is tested on ADNI data for brain imaging
genetics. The details of these algorithms and their results are pre-
sented in Supplementary Table S1, in which five competing methods
are used for comparison and each method exploits different subsets
and different QTs.

As found in Supplementary Table S1, our method (DS-SCCA)
acquires the best mean 6 SD values compared with four competing
methods for the brain ROI features of the non-network structure on
the ADNI databases. Thus, further proves that the functional con-
nectivity for brain regions can assist to discover the important brain
ROIs closely related to SNPs.

4.4 Limitations and future work
Experimental results presented above have validated the effective-
ness and superiority of our method in brain imaging genetics associ-
ation analysis. However, three limitations are included in our work.
First, we only study the connectome genetics, which can be used for
exploring the relationship between SNPs and brain network and has
no ability to fully analyze the topological structure of brain network.
Such topological structure has been proved to provide effective
structural information and further promote the imaging genetic
study. The future work is further focused on the construction of the

Table 2. The edges are selected via the designed DS-SCCA

approach

Significance Edge

1 L. Pallidum L. Angular gyrus

2 L. Middle frontal gyrus L. Calcarine cortex

3 L. Pallidum L. Caudate

4 R. Middle frontal gyrus L. Posterior cingulate gyrus

5 R. Putamen R. Inferior frontal gyrus (triangular)

6 L. Pallidum L. Orbitofrontal cortex (middle)

7 L. Calcarine cortex L. Middle frontal gyrus

8 L. Posterior cingulate gyrus R. Middle frontal gyrus

9 R. Precentral gyrus R. Suplementary motor area

10 R. Paracentral lobule L. Amygdala

Note: L, left; R, right.

Fig. 7. Visualization of the edges selected via the designed DS-SCCA approach

Fig. 8. The experimental results with different k on different QTs properties imaging

data
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brain network model, combination of the topological structure, and
the mining of more brain network features to discover biologically
meaningful results. Second, in this initial work, our DS-SCCA model
could be well exploited to calculate accurate bi-multivariate correla-
tions and select relevant features. In order to obtain optimal solution
of this model, we update W

ðmÞ
f ; b

ðmÞ
f , Cf, W

ðmÞ
g ; b

ðmÞ
g , Cg, u and v it-

eratively. There are eight learnable parameters and the training time
is about 2.5 h. Nevertheless, once more features are contained in
datasets, it will be more challenging to identify truly relevant ones.
Thence, how to design an improved DS-DSCCA model and reduce
the training time should be focused on the future study. Third, in
our study, our used data (brain network phenotype data and SNP
genotype data) here are not the biological sequence, therefore these
related tools for biological sequence analysis such as BioSeq-BLM
(Li et al., 2021), BioSeq-Analysis2.0 (Liu et al., 2019), ilearn (Chen
et al., 2020), etc. cannot be directly used in our present work. In the
future study, we will also focus on the biological sequence data and
use the related tools for biological sequence analysis to explore the
brain imaging genetics.

5 Conclusion

In this article, a comprehensive association analysis for both edge-level
and network-level brain connectomic features is conducted. Different
from previous works focusing on the tracts (i.e. ROIs), we develop a
DS-SCCA method for investigating the genetic variants underlying these
connectomic features. In addition, the proposed DS-SCCA method is a
regularized, deep extension, scalable multi-SNP-multi-QT method,
which is well-suited for applying imaging genetic association analysis to
the ADNI datasets with non-linearity, high-dimensionality and a small
amount of subjects. Extensive experimental results have validated the ef-
fectiveness of our method. Furthermore, this study initially attempts to
consider how genetic factors affect brain connectivity, which is the
main contribution of this article.
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